Identification of Novel Therapeutics Molecules against Old and New World Cutaneous Leishmaniasis

Investigator: Adam Renslo, PhD
Sponsor: University of Texas, Medical Branch at Galveston

Location(s): United States


New drugs are needed to treat visceral leishmaniasis (VL) because the current therapies are toxic, expensive, and parasite resistance may weaken drug efficacy. We established a novel ex vivo splenic explant culture system from hamsters infected with luciferase-transfected Leishmania donovani to screen chemical compounds for anti-leishmanial activity. This model has advantages over in vitro systems in that it: 1) includes the whole cellular population involved in the host-parasite interaction;  2) is initiated at a stage of infection when the immunosuppressive mechanisms that lead to progressive VL are evident; 3) involves the intracellular form of Leishmania; 4) supports parasite replication that can be easily quantified by detection of parasite-expressed luciferase; 5) is adaptable to a high-throughput screening format; and 6) can be used to identify compounds that have both direct and indirect anti-parasitic activity.

The ex vivo splenic explant model provides a powerful approach to identify new compounds active against L. donovani within the pathophysiologic environment of the infected spleen. Further in vivo evaluation and chemical optimization of these lead compounds may generate new candidates for preclinical studies of treatment for VL.